

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Mathematics as foundation for the digital transformation

Reinhard Riedl IDEA - Institut for Digital Enabling

▶ BFH-Center Digital Society

Mathematics provides the language for WHAT IS / could be, computer sciences the language for HOW TO industrialize (inspired by Edwards)

Let us start with the end – economics!

Entrepreneurs make innovations based on creativity \rightarrow creativity is key ...

... which is why so many people despise or even hate Schumpeter's work.

Revolutions, that is inventions and innovations take place within existing ecosystems and they depend on social capital ... How can we measure that?

How can we measure that?

inventions and innovations take place within existing ecosystems and they depend on social capital ...

Kevolutions, that is

Conjecture: The economic potential of a country depends on its knowledge & knowhow materialized in the production of goods $\rightarrow \dots \rightarrow$ we have to look at the richness of exported goods to predict future growth!

Basic ideas of the theory of **economic complexity**

- The matrix M describes the relative comparative advantages (RCAs) of countries with respect to products
 - ▶ M_{cp} is equal to 1 if the RCA $R_{cp} \ge 1$ for country c and the product p (we say «c exports p»), and 0 otherwise
 - \blacktriangleright M_{cp} = 1: product p is said to be in the «export basket» of c
 - ▶ k_c denotes the **diversity of the country c**, $k_c = \sum_p M_{cp}$
 - \blacktriangleright k_p denotes the **ubiquity of the product p**, k_p= $\sum_{c}M_{cp}$
- PCI estimates the knowhow needed to produce products and ECI estimates the knowhow available in the countries

$$R_{cp} = \frac{X_{cp}}{E(X_{cp})}$$

$$ECI_{c} = \frac{1}{k_{c}} \sum_{p} M_{cp} PCI_{p}$$

$$PCI_{p} = \frac{1}{k_{p}} \sum_{c} M_{cp} ECI_{c}$$

These measures can be further improved by taking the hardness to produce certain goods into consideration (e.g. with the reflection method).

Product space is defined by the affinity matrix Φ_{ii}

 $\phi_{i,j} = \min\{\Pr(ext{RCA}x_i \geq 1 \mid ext{RCA}x_j \geq 1), \Pr(ext{RCA}x_j \geq 1 \mid ext{RCA}x_i \geq 1)\}$

Development of countries is in parts captured by the traversing of product space

- Transition takes place towards products with a high average proximity to products in the «export basket»
- 2.5 If the average **centrality** of the 2 products in the export basket is high, its development 1.5 opportunities are high conomic Complexity Index [2008] 0.5 (Adapted) ECI strongly Ω correlates with GDP -0.5 -| Being above the approximation KWT -1.5 line means good perspectives -2 └_ 10² for growth above the average 10⁴ 10⁵ GDP per capita in USD [2009]

Economic complexity leads to future-oriented country rankings

Hausmann, Hidalgo et al.

Figure 1. ECI country rankings

What did the United States export in 2011?

Why do we need mathematics here?

- 1. All the economics here is mathematics:
 - ▶ the adapted ECI is an eigenvector of a matrix and it allows for an interpretation in terms of durations of stopped random walks.
 - Network properties reflect the future opportunities of a national economy.
- 2. Mathematics helps to improve policy making.
 - The design of strategies for continuing education and to some extent even for education – can benefit from an in depth analysis of the product space network.
- 3. The monster waiting in the background of the foundation of theories is entropy which very few have ever understood.

Mathematics plays a key role in the economic study of social capital, i.e. knowledge, knowhow, and sharing

II. Let us continue with the means – the digital transformation!

Production factors themselves change

The digital transformation of the creation of value leads to far reaching changes of the economy ...

Competition man against nachine in the discipline: «fixed context with experience»

Man & Machine Machine Machine 2 3

In all situations with defined context and recorded good practice!

Valorization beyond financial resources becomes a dominant business model

7½ of 10 stages of the digital transformation Rocket are fueled by mathematics

From ecosystem thinking to networking thinking: networks, attention, popularity

Viral communication is fake meta-news

Networks exhibit some interesting phenomenons known from physics

Bose-Einstein condensation in complex networks

Why do we need mathematics here?

- 1. Necessity to understand properties of a diverse set of networks:
 - Down to earth business: Social media marketing
 - Advanced business: Ecosystems around products
 - Basic research: Entrepreneurial spillover-effects in urban centers and in the digital hinterland
- 2. Creation of structures and input data for simulations:
 - E.g. networks with specified properties
 - E.g. large sets of customer behavior data
- 3. Lots of open questions around big data and machine learning:
 - To improve and classify algorithms
 - To identify explanatory structures
 - To design secure containers
 - To evaluate inference uncertainty

Computational social science is becoming a key discipline – it relies on physics & mathematics!

III. Let us look at the precondition: "digital skills"

Mathematics will play a key role in future disciplinary work

- Criminal investigations
- Forecasting
- Security
- Strategy work

Algorithms are also key for everyday problem solving

- They do not only work in sports, they even improve common sense practice
 - Purchasing
 - > Organizing
 - Selecting team members
 - Search for the missing
 - … including: searching for missing information

Mathematics is the «design science» supporting computational thinking

- Designing models
- Designing algorithms
- Designing the procuration of data
- Designing the code
- Designing the business
- Designing the business optimization

«No-discrimination» is impossible if you ignore discrimination paramaters – data show surprising effects ...

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

Krishna Gummadi

There is no ethics without mathematics!

We have to improve education on both!

Die lange Nacht der Metamorphose

Über die Gentrifizierung der Kultur

Berner Fachhochschule Haute école spécialisée bernoise Bern University of Applied Sciences

Merci!

reinhard.riedl@bfh.ch

www.societybyte.swiss

▶ BFH-Zentrum Digital Society

BFH-Center Digital Society

The WHY: The digital transformation shall be an *enabler* for people, disciplines, business, and government!

The HOW: We help actors to speed up the appropriation of digital tools!

The WHAT:

- Methods: sustainable design & applied data science
- **•** Topics: Identity, privacy, and cybersecurity
- Areas: digital health & smart cities

www.societybyte.swiss

Personal Background

- Dipl. Ing. in engineering mathematics from Johannes Kepler University Linz
- Dr. phil. from the University of Zurich for a thesis on the interplay of function theory, analytic and stochastic potential theory, and Banach space geomety entitled «Geometric Properties of Composition Operators on Hardy Spaces»
- Research on Computer Science & related disciplines
 - Research on performance optimization, sustainable & secure system design, legal informatics, and e-Government / e-Business
 - Visiting associate professor for High Performance Computing at the University of Rostock
 - Visiting full professor for System Software, Communication, and Distributed Systems at the University of Zurich
 - Chief architect in two European R&D projects on *E-Government and* representative of Switzerland in the large scale pilot STORK 2.0
- Research on Business Administration & Economics
 - Research on tam work in high performance teams, socio-technological ecosystems, the digital single market (DSM), and the digital transformation of disciplines and sectors (with focus on healthcare, agriculture, and sports)
 - Research professor at BFH Business School currently Co-Director of IDEA Institute for Digital Enabling and Head of the transdisciplinary BFH Center Digital Society

Personal Background

Business activities

- Technological consulting (IT solutions, IT-security, market potential) & leadership consulting (development of IT departments, digital transformation)
- ▶ Co-founder and member of the board of all-acad.com AG
- Member of the board of 3L Informatik AG
- Jury president «Public Affairs» in BOSW-Award

Further past activities

- Member of the Swiss National Advisory Board for E-Government
- Co-Founder and Vice-President of E-Government Symposium Switzerland

Further current activities

- President of Swiss Informatics Society (SI) & member of the presidium of GI
- President of ISCM Bern (IGNM Bern)
- Treasurer of Praevenire (www.Praevenire.at)
- Member of the steering committee of NRP 75 "Big Data"
- Member of the steering committee of TA Swiss
- Member of the board of eJustice.ch
- Member of the advisory board of Ifib GmbH (University of Bremen)
- Editor-in-chief of <u>www.societybyte.swiss</u>